
Floyd and Speer, Experimental Results for CBQ 1

A Maxidle

We assume that maxidle is set when a class is created. Maxi-
dle determines the maximum size burst allowed for a class
that has sent no packets in the recent time interval.

Definitions: t, g, p. Let be the time to transmit a packet,
for the most recent packet sent from a class. Let be the
fraction of the link bandwidth allocated to that class. If the
actual interpacket time for packets sent back-to-back from
the class is , then the `target' interpacket time (the time be-
tween transmitting two packets of that size at the allocated
rate) is , and idle is . The formula for comput-
ing avgidle is

The weight would typically be (that is,
, for set to) or (for

set to 5). The weight determines the “time
constant” of the averager.

Assume that avgidle initially has the value . Then
after back-to-back packets, avgidle is

This derivation uses the fact that

If reaches after consecutive packets, and
had the value at the beginning of the burst, then the
maximum size burst allowed for that class is packets. In
order to allow a maximum size burst of packets of bytes
each, should be set to

(1)

where is the packet transmission time for a packet of
bytes.

A.1 An additional constraint on maxidle

In addition to equation (1) above, maxidle needs to be suf-
ficiently large to allow for the normal variation in idle, and
therefore avgidle, over one round of the round-robin schedul-
ing. This is not a problem for classes with moderate band-
width allocations, but an additional constraint is required for
classes with bandwidth allocations greater than half the link
bandwidth.

Let be the packet transmission time for a “typical” packet.
When a class sends two packets back-to-back, the resulting
value of idle is , as shown earlier. However, any class

allocated less than 100% of the link bandwidth will occa-
sionally have to wait for at least one other packet to be trans-
mitted, and in this case the resulting value of idle will be at
least (making the simplifying assumption for the
moment that all packets are the same size). Thus maxidle
has to be sufficiently large not to “lose” the information that
a class waited for another packet to be transmitted.

Consider a class A that has just become overlimit (e.g.,
avgidle has just become negative), and has to wait for a packet
from another class to be transmitted. After that transmission,
class A's value for idle is , and this is averaged into
the previous value of as follows:

This gives

Thus, to ensure that a high-bandwidth class does not “lose”
information about having waiting for some other packet to
be transmitted, it is sufficient that the following condition on
maxidle be observed:

A.2 Maxidle with arbitrary packet sizes

Of course, packets can come in a wide range of sizes. As-
sume that the actual packets are bytes, for some ,
with transmission times of . Then what is the maximum
number of back-to-back packets of this size that could be
sent, if avgidle is initially at the value for maxidle given by
the equation above?

Idle will be , and after back-to-back
packets,

We would like to know the value of when avgidle first be-
comes zero.

Solving we get

Floyd and Speer, Experimental Results for CBQ 2

n=8, g=15/16
Packet size (normalized).

N
o.

 o
f b

ac
k-

to
-b

ac
k

by
te

s
(n

or
m

al
iz

ed
).

0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

Figure 1: Number of back-to-back bytes allowed by maxidle
given a range of packet sizes. Fraction of allocated through-
put, for .

and

The initial transmission time was based on -byte
packets. Now, instead of sending back-to-back bytes,
with packets of bytes we get to send back-to-
back bytes. Figure 1 shows plotted as a function of ,
for and . As Figure 1 shows, maxidle is
fairly effective in controlling the maximum number of back-
to-back bytes even for a range of packet sizes.

A.3 The calculation of avgidle

This section shows that the calculation of avgidle in the code
in fact corresponds to the equation in [FJ95]. From [FJ95],
avgidle is calculated from idle as follows:

for some weight chosen as a negative power of two.
In the code in rm class.c, there are two cases. When the

option `USE HRTIME' is employed, meaning that a 64-bit
representation of wall-clock time is used, avgidle is repre-
sented in its true unscaled value, and the following equation
is used:

avgidle += (1)
((idle - avgidle) >> RM_FILTER_GAIN);

This is equivalent to the following:

avgidle +=
(idle - avgidle) (1/2ˆRM_FILTER_GAIN);

or equivalently,

avgidle =
(1 - 1/2ˆRM_FILTER_GAIN) avgidle
+ (1/2ˆRM_FILTER_GAIN) idle;

This gives the correct equation.
When `USE HRTIME' is not employed, the scaled value

avgIdle is used as follows:

avgIdle = avgidle * 2ˆRM_FILTER_GAIN,

for avgidle the true unscaled value. In this case, the fol-
lowing equation is used instead of equation (1):

avgIdle += (2)
idle - (avgIdle >> RM_FILTER_GAIN),

This is therefore equivalent to

avgidle * 2ˆRM_FILTER_GAIN +=
idle - avgidle.

Simplifying,

avgidle +=
(idle - avgidle)/2ˆRM_FILTER_GAIN.

Thus, equation (1) when `USE HRTIME' is employed is
equivalent to equation (2) and a scaled value for avgIdle
when `USE HRTIME' is not employed.

B Regulating overlimit classes: the de-
tails

Definition: undertime, now, overlimit. The CBQ sched-
uler checks the class variable undertime to see if a class can
send packets without borrowing. A class is not allowed to
send a packet when and the class is un-
able to borrow. If is positive after a packet has been
sent from a class, then should be set to zero (or
to something else less than the current time).

After a packet is sent from a class, is updated.
This section explains the equations used when is
negative and a class that is unable to borrow therefore has
to be regulated to its allocated bandwidth. If the class is to
be regulated, then it must wait at least the target waiting time
ptime before sending another packet, for

If is negative, then the class must also wait at least

additional seconds, to ensure that avgidle will no longer be
negative when the next packet is sent.

To show that this is correct, the class will wait

seconds before sending the next packet. Assume that this
packet is the same size as the last one, and also has a trans-
mission time of seconds. Then will be calculated as

In the simulator ns, this is called instead of
. Recall that is defined by the following

equation, for the weight used in the exponential weighted moving aver-
age: .

Floyd and Speer, Experimental Results for CBQ 3

and the next value for will be as follows:

There is an optional parameter called extradelay in the
ns simulator that can be used in determining how long to ad-
ditionally delay an overlimit class. The parameter extrade-
lay gives the additional time interval that a overlimit class
must wait before sending another packet. This parameter de-
termines the steady-state burst size for a class when the class
is running over its limit. When extradelay is set to 0, then
the steady-state burst size for an overlimit class is one packet.
We do not discuss this further in this paper.

For the experimental code, the parameter offtime is used
to determine how long an overlimit class is to be delayed.
For a steady-state burst size of one packet, offtime is set to
ptime, for ptime as defined in the beginning of this section.
For a steady-state burst size of packets, for , then
offtime is set as follows:

for

B.1 Controlling the minimum burstiness for a
regulated class

The guidelines above for calculating undertime assume that
after a regulated class sends a packet, it will have to wait
the minimum possible time before sending the next packet.
However, for efficiency of implementation, it might in some
environments be desirable to have the regulated class wait
longer after sending a packet, and to therefore send small
bursts of packets, giving a steady-state burst size for the reg-
ulated class of more than one packet.

Let offtime be the time that the class has to wait after
sending a packet. Assume that in steady state, for a class with
plenty of demand that is being restricted to its link-sharing
bandwidth), the CBQ implementation regulates the output
for that class to a steady-state burst of packets. (This refers
to a steady-state where the class is allowed to send a burst
of packets, and then is forced to wait some time before
sending another burst of packets, and so on.) Let
be the value for that allows a burst of size before

reaches 0. Then

Assume that a class is made to wait when avgidle be-
comes at most zero. Then we want to set offtime so that, if
the class is allowed to send a packet after offtime seconds,
the new value for avgidle will be , so that exactly

more consecutive packets can be sent until avgidle
reaches zero again. This is true if

for idle as follows:

This gives

As examples, for , , and , this
is

For ,

(This concurs with the findings later in this section that for
a class with a steady-state burst size of , the throughput is
higher with higher values of . As increases, then
approaches closer to , the value that would be
needed for the class to achieve 100% of its throughput allo-
cation.)

What is a class's actual throughput if this procedure is
used, and a regulated class is required to send its packets in
small bursts? The class transmits packets in seconds,
and then waits for seconds. Thus the actual through-
put, as a fraction of the maximum bandwidth of the link, is

A connection that sends bursts of packets in this man-
ner will get slightly less that the specified fraction of the
bandwidth, for . Figure 2 shows the fraction of its
allocated throughput achieved by a delayed class, for

. The x-axis shows the steady-state burst size and
the y-axis shows the allocated throughput for the class. The
z-axis shows the fraction of allocated throughput achieved by
the delayed class. For this figure, we assume that
seconds, but the results are essentially the same for a wide
range of values for (e.g., for as small as 0.01 ms). The
results for are similar to those in Figure 2. This
data argues for a small steady-state burst size, particularly

Floyd and Speer, Experimental Results for CBQ 4

5

10

15

20 0

0.2

0.4

0.6

0.8

0.6

0.8

1

5

10

15

20 0

0.2

0.4

0.6

0.8

0.6

0.8

1

Figure 2: Fraction of allocated throughput, for .

for classes with small allocations. In our simulations, we
generally use a steady-state burst size of packet.

(What is the intuition behind this behavior? With a steady-
state consisting of a burst of packets followed by a delay,
the computed oscillates above and below the true
steady-state average of the variable idle. With this mecha-
nism, the class is delayed when the true average for idle is
greater than zero, and therefore the true throughput is less
than the allocated throughput.

For any , in order to guarantee that a class achieves
at least the fraction of its allocated throughput, it is suffi-
cient to pick a steady-state burst size of at most , for such
that

Figure 3 shows the upper bound on burst size for a class to
achieve at least 90% of its allocated throughput, for

. Thus, for a steady-state burst size of 8 packets, a
class should achieve at least 90% of its allocated throughput,
regardless of the allocated bandwidth for that class.

B.2 Offtime with arbitrary packet sizes

Assume that offtime is pre-computed based on an assump-
tion of a typical packet size of bytes, with a transmission
time of seconds, but that actual packets have a size of
bytes, as in Section A.2. Using the results in Section A.2, we
can infer that offtime should be fairly effective in maintain-
ing the steady-state burst size in bytes, even with a range of
typical packet sizes. Simulations confirm that the throughput
achieved by a class in bytes-per-second is fairly insensitive
to the packet size in bytes.

(g = 31/32, percent of allocation = 90%)
throughput allocation(%)

u
p

p
er

 b
o

u
n

d
 o

n
 b

u
rs

t
si

ze

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Figure 3: Upper bound on burst size for 90% of throughput,
for .

References

[FJ95] S. Floyd and V. Jacobson. Link-sharing and re-
source management models for packet networks.
IEEE/ACM Transactions on Networking, 3(4), 1995.

